SOLUTIONS TO EXAM 1, MATH 10550

1. Compute

$$
\lim _{x \rightarrow-1^{-}} \frac{x^{2}-1}{x^{2}+2 x+1} .
$$

Answer: ∞.
Solution: $\lim _{x \rightarrow-1^{-}} \frac{x^{2}-1}{x^{2}+2 x+1}=\lim _{x \rightarrow-1^{-}} \frac{(x-1)(x+1)}{(x+1)(x+1)}=\lim _{x \rightarrow-1^{-}} \frac{x-1}{x+1}=\infty$.
2. All the vertical asymptotes of the function $f(x)=\frac{x^{2}-1}{x^{3}-9 x}$ are at Answer: $x=0$ and $x= \pm 3$

Solution: Write $f(x)=\frac{g(x)}{h(x)}$ where $g(x)=x^{2}-1$ and $h(x)=x^{3}-9 x$. Since $f(x)$ is a rational function, its vertical asymptotes are among those lines $x=a$ where $a \in \mathbb{R}$ satisfies $h(a)=0$. Since $h(x)=x^{3}-9 x=x\left(x^{2}-9\right)=x(x-3)(x+3)$, we have $a=0,3,-3$. Finally, we must check that for each $a \in\{0,3,-3\}$, one of the one-sided limits $\lim _{x \rightarrow a^{-}} f(x)$ or $\lim _{x \rightarrow a^{+}} f(x)$ is $\pm \infty$. For $a=0, \lim _{x \rightarrow 0^{+}} f(x)=+\infty$. For $a=3, \lim _{x \rightarrow 3^{+}} f(x)=+\infty$. For $a=-3, \lim _{x \rightarrow-3^{+}} f(x)=+\infty$. Thus the asymptotes of $f(x)$ are the lines $x=0, x=3$, and $x=-3$.
3. For what value a is the function f given by

$$
f(x)= \begin{cases}\frac{\sqrt{9+x^{2}}-3}{x^{2}} & x \neq 0 \\ a & x=0\end{cases}
$$

continuous everywhere?
Answer: $\frac{1}{6}$
Solution: For $f(x)$ to be continuous at $x=0$, we must choose a so that:

$$
\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{\sqrt{9+x^{2}}-3}{x^{2}}=f(0)=a .
$$

So we have

$$
\begin{aligned}
& a=\lim _{x \rightarrow 0} \frac{\sqrt{9+x^{2}}-3}{x^{2}}=\lim _{x \rightarrow 0} \frac{\left(\sqrt{9+x^{2}}-3\right)}{x^{2}} \frac{\left(\sqrt{9+x^{2}}+3\right)}{\left(\sqrt{9+x^{2}}+3\right)}=\lim _{x \rightarrow 0} \frac{9+x^{2}-9}{x^{2}\left(\sqrt{9+x^{2}}+3\right)}= \\
& \lim _{x \rightarrow 0} \frac{x^{2}}{x^{2}\left(\sqrt{9+x^{2}}+3\right)}=\lim _{x \rightarrow 0} \frac{1}{\left(\sqrt{9+x^{2}}+3\right)}=\frac{1}{\sqrt{9}+3}=\frac{1}{6} .
\end{aligned}
$$

4. Find $f^{\prime}(2)$ if

$$
f(x)=4 \sqrt{x+2}-\frac{16}{\sqrt{x+2}} .
$$

Answer: 2
Solution: First write $f(x)$ as a rational function:

$$
f(x)=4 \sqrt{x+2}-\frac{16}{\sqrt{x+2}}=\frac{4(x+2)-16}{\sqrt{x+2}}=\frac{4 x-8}{\sqrt{x+2}} .
$$

Using the Quotient Rule, we have the formula

$$
f^{\prime}(x)=\frac{4(\sqrt{x+2})-\frac{4 x-8}{2 \sqrt{x+2}}}{x+2} .
$$

Evaluating at $x=2$ yields

$$
f^{\prime}(2)=\frac{4 \sqrt{4}-\frac{4 \cdot 2-8}{\sqrt{4}}}{2+2}=\frac{4 \cdot 2-0}{4}=2 .
$$

5. Find the equation of the tangent line to the curve $y=6 \sqrt{x}+2$ at $x=9$.

Answer: $y=x+11$
Solution: $y^{\prime}=\frac{6}{2 \sqrt{x}}=\frac{3}{\sqrt{x}}$. To find the slope m of the tangent line, we evaluate y^{\prime} at $x=9$:

$$
m=\frac{3}{\sqrt{9}}=1
$$

When $x=9, y=20$, so to find the tangent line, we use the point-slope formula with slope $m=1$ and point $(9,20)$:
$y-20=1(x-9)$, or $y=x+11$.
6. Find the derivative of $f(x)=\left(3+x^{3}\right)^{2 / 3}$.

Answer: $2 x^{2}\left(3+x^{3}\right)^{-1 / 3}$
Solution: We apply chain rule with $g(x)=x^{2 / 3}, h(x)=\left(3+x^{3}\right)$. So $f(x)=g(h(x))$, and it follows that

$$
\begin{aligned}
f^{\prime}(x) & =g^{\prime}(h(x)) \cdot h^{\prime}(x) \\
& =\frac{2}{3}\left(3+x^{3}\right)^{-1 / 3} \cdot 3 x^{2} \\
& =2 x^{2}\left(3+x^{3}\right)^{-1 / 3} .
\end{aligned}
$$

7. Compute the derivative of

$$
\begin{gathered}
f(x)=\frac{x^{2}+\cos x}{x+\cos ^{2} x} . \\
\text { Answer: } \frac{(2 x-\sin x)\left(x+\cos ^{2} x\right)-(1-2 \sin x \cos x)\left(x^{2}+\cos x\right)}{\left(x+\cos ^{2} x\right)^{2}}
\end{gathered}
$$

Solution: Using quotient rule with $f(x)=\frac{g(x)}{h(x)}$, where $g(x)=x^{2}+\cos x$ and $h(x)=$ $x+\cos ^{2} x$, we obtain

$$
\begin{aligned}
f^{\prime}(x) & =\frac{h(x) g^{\prime}(x)-g(x) h^{\prime}(x)}{[h(x)]^{2}} \\
& =\frac{\left(x+\cos ^{2} x\right)(2 x-\sin x)-\left(x^{2}+\cos x\right)(1-2 \cos x \sin x)}{\left(x+\cos ^{2} x\right)^{2}} .
\end{aligned}
$$

8. If $f(x)=\cos \left(x^{2}\right)$, find $f^{\prime \prime}(x)$.

Answer: $f^{\prime \prime}(x)=-2 \sin \left(x^{2}\right)-4 x^{2} \cos \left(x^{2}\right)$
Solution: We apply the chain rule to obtain the first derivative:

$$
\begin{aligned}
f^{\prime}(x) & =-\sin \left(x^{2}\right) \cdot 2 x \\
& =-2 x \sin \left(x^{2}\right) .
\end{aligned}
$$

Next, we differentiate the first derivative to obtain $f^{\prime \prime}(x)$:

$$
\begin{array}{rlr}
f^{\prime \prime}(x) & =\frac{d}{d x}\left[f^{\prime}(x)\right] \\
& =\frac{d}{d x}\left[-2 x \sin \left(x^{2}\right)\right] & \\
& =\frac{d}{d x}[-2 x] \cdot\left(\sin \left(x^{2}\right)\right)+(-2 x) \frac{d}{d x}\left[\sin \left(x^{2}\right)\right] & \text { (Product Rule) } \\
& =-2 \sin \left(x^{2}\right)-2 x\left(\cos \left(x^{2}\right) \cdot \frac{d}{d x}\left[x^{2}\right]\right) & \text { (Chain Rule) } \\
& =-2 \sin \left(x^{2}\right)-2 x \cos \left(x^{2}\right) \cdot 2 x \\
& =-2 \sin \left(x^{2}\right)-4 x^{2} \cos \left(x^{2}\right) .
\end{array}
$$

9. Compute

$$
\lim _{x \rightarrow 0} \frac{\sin (4 x)}{\tan (9 x)}
$$

Answer: $\frac{4}{9}$

Solution: We note that $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1$ and evaluate the limit as follows:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin (4 x)}{\tan (9 x)} & =\lim _{x \rightarrow 0} \frac{\frac{\sin (4 x)}{\frac{\sin (9 x)}{\cos (9 x)}}}{} \\
& =\lim _{x \rightarrow 0} \frac{\sin (4 x) \cos (9 x)}{\sin (9 x)} \\
& =\lim _{x \rightarrow 0} \frac{4 \not x \cdot \frac{\sin (4 x)}{4 x} \cos (9 x)}{9 \not x \cdot \frac{\sin (9 x)}{9 x}} \\
& =\lim _{x \rightarrow 0} \frac{4 \cdot \frac{\sin (4 x)}{4 x} \cos (9 x)}{9 \cdot \frac{\sin (9 x)}{9 x}} \\
& =\frac{4 \cdot \lim _{x \rightarrow 0} \frac{\sin (4 x)}{4 x} \cdot \lim _{x \rightarrow 0} \cos (9 x)}{9 \cdot \lim _{x \rightarrow 0} \frac{\sin (9 x)}{9 x}} \\
& =\frac{4 \cdot 1 \cdot 1}{9 \cdot 1} \\
& =\frac{4}{9} .
\end{aligned}
$$

10. The graph of the function $f(x)$ is shown below:

Which of the following gives the graph of $f^{\prime}(x)$?

Answer:

Solution: The function $f(x)$ is increasing on the following (approximate) intervals: $(-\infty,-3.6),(-1,1)$, and $(3.6, \infty)$. The graph of $f^{\prime}(x)$ must be positive on these intervals. The function $f(x)$ is decreasing on the intervals $(-3.6,-1)$ and $(1,3.6)$. This means that $f^{\prime}(x)$ must be negative on these intervals. $f^{\prime}(x)$ is zero when $x=-3.6,-1,1,3.6$.

The above graph satisfies these requirements. Estimating slopes of tangent lines gives us $f^{\prime}(-4) \approx 5, f^{\prime}(2) \approx-7, f(0) \approx 5, f(2) \approx-8$ and $f(4) \approx 6$ which also agrees with the given graph. Note that the requirement that $f(x)$ is increasing on the interval $(-\infty,-3.6)$ eliminates 3 of the 4 graphs.
11. Show that there are at least two solutions of the equation

$$
x^{4}=6 x-1 .
$$

Be sure to check the hypotheses of any theorem you might use.
Solution: We must show that the equation

$$
x^{4}-6 x+1=0
$$

has two solutions. Let $f(x)=x^{4}-6 x+1$. Since f is a polynomial, f is continuous everywhere, so we may use the Intermediate Value Theorem.
First, $f(0)=1$ and $f(1)=-4$, so since $f(0)>0>f(1)$, we conclude by the Intermediate
Value Theorem that f has at least one zero in the interval $(0,1)$.
Similarly, since $f(1)=-4<0$ and $f(2)=5>0$, we conclude by the Intermediate Value
Theorem that f has at least one zero in the interval $(1,2)$.
Finally, since the intervals $(0,1)$ and $(1,2)$ are disjoint, f has at least two zeros.
12. Find the derivative of

$$
y=\frac{1}{\sqrt{x}+1}
$$

using the definition of the derivative.

Solution:

$$
\begin{aligned}
y^{\prime} & =\lim _{h \rightarrow 0} \frac{\frac{1}{\sqrt{x+h}+1}-\frac{1}{\sqrt{x}+1}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{x}+1-\sqrt{x+h}-1}{h(\sqrt{x+h}+1)(\sqrt{x}+1)} \\
& =\lim _{h \rightarrow 0} \frac{(\sqrt{x}-\sqrt{x+h})}{h(\sqrt{x+h}+1)(\sqrt{x}+1)} \frac{(\sqrt{x}+\sqrt{x+h})}{(\sqrt{x}+\sqrt{x+h})} \\
& =\lim _{h \rightarrow 0} \frac{x-(x+h)}{h(\sqrt{x+h}+1)(\sqrt{x}+1)(\sqrt{x}+\sqrt{x+h})} \\
& =\lim _{h \rightarrow 0} \frac{-h}{h(\sqrt{x+h}+1)(\sqrt{x}+1)(\sqrt{x}+\sqrt{x+h})} \\
& =\lim _{h \rightarrow 0} \frac{-1}{(\sqrt{x+h}+1)(\sqrt{x}+1)(\sqrt{x}+\sqrt{x+h})} \\
& =\frac{-1}{(\sqrt{x}+1)(\sqrt{x}+1)(\sqrt{x}+\sqrt{x})} \\
& =\frac{-1}{2 \sqrt{x}(\sqrt{x}+1)^{2}} .
\end{aligned}
$$

13. At what point(s) on the ellipse $3 x^{2}+y^{2}=21$ is the tangent line at that point parallel to the straight line $y=-2 x+6$?

Solution: We first use implicit differentiation to find $\frac{d y}{d x}$. Differentiating both sides with respect to x, we obtain

$$
\frac{d}{d x}\left(3 x^{2}+y^{2}\right)=\frac{d}{d x}(21) .
$$

Using the product rule on the left-hand side, we get

$$
6 x+2 y \frac{d y}{d x}=0 .
$$

We solve for $\frac{d y}{d x}$:

$$
\begin{aligned}
6 x+2 y \frac{d y}{d x} & =0 \\
\Rightarrow 2 y \frac{d y}{d x} & =-6 x \\
\Rightarrow \frac{d y}{d x} & =-\frac{3 x}{y} .
\end{aligned}
$$

The tangent line to the ellipse is parallel to the straight line $y=-2 x+6$ whenever it has slope -2 , or, equivalently, when $\frac{d y}{d x}=-2$. Setting $\frac{d y}{d x}=-\frac{3 x}{y}=-2$, we obtain the relation $-3 x=-2 y$, which reduces to $y=\frac{3 x}{2}$. So we need to find all points on the ellipse where $y=\frac{3 x}{2}$. Substituting $\frac{3 x}{2}$ for y into the equation for the ellipse, we obtain

$$
\begin{aligned}
3 x^{2}+\frac{9 x^{2}}{4} & =21 \\
& \Rightarrow \frac{21 x^{2}}{4}=21 \\
& \Rightarrow x^{2}=4 \\
& \Rightarrow x= \pm 2
\end{aligned}
$$

Since $y=\frac{3 x}{2}$, the two points at which the tangent line to the curve has slope -2 are $(2,3)$ and $(-2,-3)$.

